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Abstract

In many applied precision farming applications, remotely sensed survey data are collected specif-
ically because these data correlate well with some soil property of interest. Additionally, a general
model for the functional relationship between the soil property and the sensor data is often known
a priori, but the exact parameter estimates associated with the model must still be determined via
some type of site-specific sampling strategy. The main objective of this paper is to present an objec-
tive sampling and simplified modeling strategy for predicting soil property information from such
spatially referenced sensor data. Some common types of spatial linear prediction models and linear
geostatistical models are reviewed, and the assumptions needed to reduce these more complicated
models to a spatially referenced, ordinary linear regression model (LR) are discussed. Next, a model-
based sampling strategy for estimating an ordinary linear regression model in the spatial setting is
described. This sampling strategy incorporates a traditional response surface design into an iterative,
space-filling type algorithm for purposes of selecting sample site locations that are (i) nearly optimal
with respect to matching the selected response surface design levels and (ii) physically separated far
apart as possible to ensure the best chance that the independent error assumption is adequately met.
This strategy can in principal be used to select a minimal number of optimal sample site locations
that satisfy the residual independence assumptions in the ordinary model. A detailed case study of a
salinity survey using electromagnetic induction (EM) and four-electrode sensor data is then presented.
These case study results confirm that the sampling strategy was highly effective at ensuring efficient
regression model parameter estimates and a reliable salinity prediction map. An additional simulation
study confirmed the effectiveness of this model-based strategy over a more traditional simple random
sampling strategy with respect to four regression model design criteria. Under the right conditions,
this methodology should be applicable to many types of precision farming survey applications where

∗ Corresponding author.
E-mail address:slesch@ussl.ars.usda.gov.

0168-1699/$ – see front matter. Published by Elsevier B.V.
doi:10.1016/j.compag.2004.11.004



154 S.M. Lesch / Computers and Electronics in Agriculture 46 (2005) 153–179

soil property/sensor data prediction models need to be fitted using only a limited number of soil
samples.
Published by Elsevier B.V.
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1. Introduction

The collection of apparent soil electrical conductivity (ECa) survey data for the purpose
of characterizing various spatially referenced soil properties has received considerable at-
tention in the soils literature in the last 20 years (Corwin and Lesch, 2003). Most of the
original interest was directed towards the characterization of field scale soil salinity patterns
(Rhoades et al., 1999; Hendrickx et al., 2002). However, ECa survey data are being increas-
ingly used in precision farming applications in an effort to obtain information on numerous
soil properties. In practice, apparent soil conductivity survey data often correlate reasonably
well with various soil properties (salinity, soil texture, soil water content, etc.) under differ-
ent field conditions (Lesch and Corwin, 2003). Not surprisingly, ECa data have therefore
been used extensively in precision agriculture survey applications for characterizing the
spatial variability of these properties.

The basic idea behind the theory of precision farming is to exploit the knowledge of
the inherent spatial variability of the soil and crop condition(s) in a specific field or region
to design better management practices (Larson and Robert, 1991). In turn, these better
agricultural management practices should lead to higher crop yield and/or more optimal
use of agrichemicals, water, time and labor, etc., and thereby improve sustainability through
increased production and profit margin, decreased input requirements, and/or a reduction
in detrimental environmental impacts.

In principal, many precision farming management strategies hold great promise. How-
ever, in practice, these same management strategies are greatly affected by both the avail-
ability and accuracy of the spatially referenced input soil properties. In situations where
direct, exhaustive sampling must be employed to gather adequate spatial precision about
one or more input soil properties, the theoretical gain in profit from a site-specific manage-
ment strategy can be quickly offset by the extra cost incurred by the sampling effort. Hence,
many promising management strategies are often not cost effective in practice, due to the
need for exhaustive sampling of the necessary baseline input variable(s).

This sampling cost issue has led many researchers to aggressively pursue the idea of
collecting secondary ground- or air-based remote sensing information as surrogate data,
i.e., data that can be used to help infer the detailed spatial pattern(s) of the primary input
property(ies) of interest. Survey ECa data are perhaps the most common example of surro-
gate remote sensing data, but certainly not the only one. Other examples of remote sensing
data are numerous, and include various types of imagery data, natural gamma ray mea-
surements, time-domain electromagnetic induction (EM) and time-domain reflectometry,
ground-penetrating radar, and direct-yield monitoring measurements, etc. Regardless of the
type of data collected, the basic idea is the same: the sensor data are acquired to increase
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knowledge about the underlying target soil property(ies) of interest, and thereby greatly
reduce the need for acquiring baseline soil samples.

In most applied surveys, the collected sensor data are known to correlate well with
one or more target soil properties of interest. Additionally, the general relationship (i.e.,
the model structure) can be reasonably well specified a priori, but accurate values for
the model parameters can only be obtained through directed baseline sampling efforts.
Thus, an obvious question arises: how should the samples be chosen (i.e., where and how
many)?

The objective of this paper is to present a coherent, objective model-based sam-
pling strategy for addressing the statistical issues of (i) when and how a spatially ref-
erenced regression model can be used to predict a target soil property from acquired
survey data and (ii) where baseline calibration soil sample data should be acquired in
order to optimize the model estimation process. The techniques presented here origi-
nated out of the need to accurately predict spatial soil salinity patterns from acquired
ECa survey data without relying on excessive soil sampling (Lesch et al., 1995a,b,
2000). However, the underlying statistical methodology is quite general and directly
applicable to the broader precision farming sampling and modeling issue mentioned
above.

2. Spatial linear prediction models

2.1. Model specification

In a typical field survey where some type of ancillary sensor data are collected, the
general goal is to use the ancillary sensor data to help predict a specific, unobserved soil
property. Without loss of generality, define the relationship between the soil property
measurements,y, and sensor data,z, to be

y = g(z) + e (1)

whereg(z) represents some unknown function of the vector ofk-collocated sensor readings,
ande represents a random error component. Now assume that Eq.(1) can be adequately
approximated using a suitably defined spatial linear prediction model:

y = Zβ + η (2)

wherey represents an (mx1) vector of observed soil property data,Z represents an (mxp)
data matrix that includes observed functions of sensor readings collected at the same
m collocated survey sites,� represents a (p x1) vector of unknown parameter estimates
andη represents a second-order stationary, jointly normal random error process. Typical
stationary spatial structures forη are well documented in the geostatistical-statistical
literature (Cressie, 1991; Haining, 1990; Wackernagel, 1998; Webster and Oliver, 2001);
examples in two dimensions include the isotropic and anisotropic exponential, spherical,
and gaussian covariance structures, either with or without nugget effects. (For the remainder
of this paper the residual errors in Eq.(2) will always be assumed to follow a joint normal
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distribution, regardless of any additional assumptions made concerning the covariance
structure.)

Eq.(2) represents a versatile linear prediction model that can incorporate various types of
modeling assumptions. When the error process is assumed to be uncorrelated at all positive
lag distances (η represents a pure nugget-effect), then Eq.(2) reduces to an ordinary linear
regression model (LR). This model achieves all of its predictive capabilities via regression
on the sensor data (Z matrix), since the residuals are spatially independent (under the
assumption of joint normality). When a second-order stationary random error process is
assumed, then Eq.(2) is commonly referred to as a spatial linear regression (SLR) model.
This model incorporates both a regression component and spatially correlated residual error
structure to improve the prediction accuracy. An even more comprehensive approach is the
hierarchical spatial linear regression (HSLR) model, which was recently introduced by
Royle and Berliner (1999). In this model, the sensor readings themselves are also assumed
to exhibit some type of stochastic spatial structure, and this structure is in turn used to
interpolate the sensor data (and thus the regression model predictions) across the entire
spatial domain.

Many popular geostatistical modeling techniques tend to be very similar to the classical
spatial prediction models discussed above. As discussed byRoyle and Berliner (1999),
the HSLR model can be viewed as an alternative form of a cokriging (CoK) model,
developed from a hierarchical (i.e., conditional) viewpoint. Likewise, the SLR model is
mathematically equivalent to a universal kriging (UK) equation and/or a kriging with ex-
ternal drift (KED) equation (Cressie, 1991; Rivoirard, 2002; Wackernagel, 1998). KED
models are commonly used to incorporate known (observed) auxiliary covariate data into
the kriging system, while UK models are commonly used when the expected value of
the random function is assumed to a polynomial function of the position coordinates.
In both cases the auxiliary covariate data are treated as fixed (i.e., non-stochastic) and
observed.

As discussed inCressie (1991)and originally developed byGoldberger (1962), the best
linear unbiased predictor for the response variable (i.e., soil property) in the SLR, KED,
and/or UK model can be expressed as

y0 = c′�−1y+ (z′0 − c′�−1Z)b = c′�−1(y− Zb) + z′0b (3)

with

b = (Z′�−1Z)
−1
Z′�−1y (4)

In Eqs.(3) and (4), Z andy are defined as in Eq.(2), y0 represents the predicted response
level,z0 represents the collocated sensor data (predictor variables),b represents the general-
least-squares (Aitken) estimate of the� parameter vector,� represents the assumed (second-
order stationary) residual spatial covariance structure, andc represents the assumed spatial
covariance structure between the model residuals and the error associated with the new
prediction site.

The LR model represents a special case of the SLR model; it arises naturally when the
regression model residuals are assumed to be normally distributed and spatially independent
(i.e., � =σ2I and c=0). Thus, Eqs.(3) and (4)reduce toy0 =z0

′b andb= (Z′Z)−1Z′y,
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respectively. This model is actually just a “spatially referenced” multiple linear regression
model where the model parameters correspond to various signal (and possibly additional
trend surface and/or blocking) components.

2.2. Model estimation strategies

In most applied survey situations, the covariate signal data are typically not exhaustive
(i.e., it is not collected absolutely everywhere). Strictly speaking, HSLR or CoK models
should be used to analyze such data when inference is desired across all possible locations
within the spatial domain. However, in practice the acquired grid data are often assumed to
be sufficiently representative of the underlying spatial domain. In turn, this allows one to
restrict his/her statistical inference to just the acquired grid data, and thereby simplify the
modeling approach to a SLR (or KED) equation.

When the covariance structure is known up to a proportionality constant in the SLR
model (i.e.,� =σ2V, whereV is assumed known a priori), the� parameter vector in Eq.
(2) can be estimated using generalized least squares (Graybill, 1976; Rao and Toutenburg,
1995). However, a specific� structure is rarely known a priori. In practice, the� parameter
vector and� covariance structure must be jointly estimated from the sample data, typically
using maximum likelihood (ML) or restricted maximum likelihood (REML) estimation
techniques (Littell et al., 1996). In such situations it is generally necessary to collect a fairly
large amount of sample data (>60 sites) in order to reasonably estimate the parameters asso-
ciated with the covariance structure when even the simplest isotropic covariance structures
are employed.

Unfortunately, this sampling load tends to be cost prohibitive in most commercial salinity
assessment and/or precision farming applications. However, in many of these same survey
situations the auxiliary sensor data are expected to be well correlated with the response
variable of interest and the assumed residual error distribution is expected to exhibit only
short-range spatial correlation. Under these conditions the simpler LR model can be used
in place of the SLR model to generate a map with a high degree of prediction accuracy,
provided that an appropriate sampling strategy is employed. This is especially advantageous
in commercial applications, since LR models can be estimated using far less sample data
(i.e., typically 10–15 sites). Furthermore, the LR parameter estimates and model predictions
should be almost as efficient as the SLR parameter estimates and predictions provided that
the model residuals approximately satisfy the spatial independence assumption (Kramer
and Donninger, 1987).

In summary, there can be a substantial reduction in cost with only a minimal loss in
precision when a LR model is used in place of a SLR or KED model, provided the sim-
plier LR modeling assumptions are satisfied. In such a scenario, one would naturally like
to employ a calibration sampling strategy that maximizes the possibility of ensuring spa-
tial independence (with respect to the residual error distribution), while simultaneously
choosing survey locations that in some way optimize the estimation of the� param-
eter vector. A prediction-based sampling strategy designed to achieve these two goals
was introduced byLesch et al. (1995b); an overview of this strategy is given in the next
section.
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3. Sampling strategies for the spatial linear model

3.1. Probability versus prediction based sampling plans

In general, probability-based sampling strategies are the most common type of
sampling designs employed in spatial research problems. Probability-based sampling
strategies include techniques like simple random sampling, stratified random sampling,
cluster sampling, and multistage sampling for geostatistical estimation problems, and
capture–recapture, line transect and adaptive sampling for detecting elusive populations,
etc. (Thompson, 1992).

Probability-based sampling strategies have a well developed underlying theory and are
clearly useful in many spatial applications (Thompson, 1992; Brus and de Gruijter, 1993).
However, they are not designed specifically for estimating models, per se. Indeed, most
probability sampling strategies explicitly avoid incorporating any parametric modeling as-
sumptions, relying instead upon randomization principles (that are built into the design) for
drawing statistical inference.

Prediction-based sampling strategies represent an alternative approach for developing
sampling designs that are explicitly focused towards model estimation. The underlying
theory behind this approach for finite population sampling and inference is discussed in
detail in Valliant et al. (2000). More generally, response surface design theory and op-
timal experimental design theory represent two closely related statistical research areas
that also study sampling designs specifically from the model estimation viewpoint (Myers
and Montgomery, 2002; Atkinson and Donev, 1992). Techniques from the latter subject
area have been applied to the optimal collection of spatial data byMüller (2001)and to
the specification of optimal designs for variogram estimation byMüller and Zimmerman
(1999). Conceptually, similar types of non-random sampling designs for variogram estima-
tion have been introduced byRusso (1984), Bogaert and Russo (1999), andWarrick and
Myers (1987).

The spatial response surface sampling approach discussed next represents a prediction
(model) based sampling strategy. In this sampling approach, one assumes that some type
of low order (linear or quadratic) regression model can be used to accurately approximate
the soil property/sensor data relationship. The sample sites are then chosen to implicitly
optimize the estimation of this model, subject to satisfying one or more explicit spatial
optimization criteria.

3.2. Spatial response surface (SRS) sampling designs

To motivate the development of a spatial response surface (SRS) sampling design, assume
that data fromk sensors have been acquired atN representative survey sites across a field
or survey region. Assume further that the soil property/sensor data relationship can be
adequately described using a suitably specified linear regression model. In the SRS sampling
approach, the goal is to select a small set ofm sample sites (m�N) that serve to both (i)
optimize the estimation of the regression parameters when using ordinary least squares
estimation methods and (ii) eliminate or minimize the effects of the spatially dependent
error structure on this estimation process.
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The development of a SRS sampling design is a four step procedure. First, the acquired
sensor data matrix (Z) is transformed into a centered, scaled, and de-correlatedX matrix via
a principal components analysis. Second, a traditional response surface sampling design is
then selected that would in theory facilitate the optimal estimation of the regression model
parameters associated with thisX matrix. In the third step, an initial set ofq “candidate”
survey sites (q>m) are extracted from theX data matrix that most closely match themdesign
levels specified by the response surface design. Finally, a set ofmsample sites are selected
from theq candidate sites using an iterative algorithm that attempts to maximize some
function of the minimum separation distance between adjacent site locations. This final
step is performed in order to minimize (or eliminate) any short-range residual correlation
effects and to facilitate the use of ordinary least squares estimation techniques. Some of the
more pertinent details associated with each of these four steps are discussed below.

Step 1. The principal components transformation

Spatially acquired soil sensor data nearly always exhibit some degree of statistical
correlation. Positively correlated data are especially common in both non-invasive and
direct-contact soil conductivity surveys, due to the physical design of the electromagnetic
induction (EM) and four-electrode systems. The primary reason for transforming the raw
sensor data matrix (Z) into a standardized principal component data matrix (X) is to remove
this correlation effect, as well as to standardize each score to have 0 mean and unit variance.
(The sensor data should be standardized first, before the principal components analysis
is performed.) This process is conceptually similar to the conversion ofnatural variables
into codedvariables in a traditional response surface model, and essentially facilitates the
overlaying of a suitable response surface design onto the (transformed) sensor data.

As discussed inLesch et al. (1995b), unusual sensor readings (i.e., outliers) are much
easier to detect both visually and/or numerically after performing a principal components
transformation. The principal components transformation aids in the preliminary screening
of the sensor data for unreliable observations, in addition to facilitating the application of the
response surface sampling design. However, unlike a typical principal components analysis,
all of the principal component scores are normally retained during the site selection process.

Step 2. The choice of a specific response surface sampling design

The particular type of response surface design one should use in a specific survey appli-
cation depends on both the assumed model and the number of sensors employed during the
survey. Whenk= 2 or 3, second-order central composite sampling designs are often highly
effective at minimizing the overall number of calibration sample sites, while still allowing
for linear versus quadratic model discrimination. When data from four to six sensors are
available, various hybrid and/or small composite designs can be quite useful. Fractional
factorial designs can also be considered, if a first-order model can be safely assumed and
the number of sensors becomes moderately large (k≥ 6). Detailed descriptions of these
and other types of plausible response surface designs are given inMyers and Montgomery
(2002).

Fig. 1 shows a second-order, rotatable central composite response surface design
(CCRSD) overlaid onto a set of >7000 transformed and de-correlated EM38 (vertical and
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Fig. 1. A second-order CCRSD overlaid onto transformed and decorrelated EM38 sensor data, for purposes of
identifying initial, candidate survey sites.

horizontal) sensor readings. The raw EM38 data were collected from a 64-ha alfalfa field
located in Imperial, California, and are used here for illustrative purposes only.1,2 In this
example, approximately 80% of the bivariate principal component scores lie within a ra-
dius of 1.8 standard deviations from the (0, 0) mean, and the cube and axial points in the
corresponding CCRSD have been adjusted to match this same radius. Hence, this design
insures that approximately 80% of the survey data lie within the design region. Further-
more, although no specific (x1, x2) de-correlated survey readings exactly match any of the
theoretical design levels, there are many sets of readings that fall quite close the each level
(i.e., within a small tolerance distance).

Step 3. The initial selection of candidate survey sites

The selection of candidate sites represents a critical step in the optimization of the
sampling design. In this step, a small number of initial sites are selected that closely match
each specified SRS design level (i.e., the design points shown inFig. 1). This selection
process can be implemented in different ways, depending on the amount of survey data
being analyzed.

In small surveys, two or three sites are normally selected for each specific design level
based solely on their statistical distance from the design level coordinates. For example,
suppose thatN transformed principal component records are available from two sensors (k1

1 The limited EM38 signal resolution setting (±1 mS/m) has caused the diagonal banding effect that is apparent
in the principal component data.

2 Mention of trademark or proprietary products in this manuscript does not constitute a guarantee or warranty
of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other
products that may also be suitable.
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andk2), and two candidate sites are to be identified for each ofmspecific design levels. If
the values of thejth design level are (τ1j , τ2j), the euclidean distance of theith (k1i , k2i) data
record to this design level is

∆ij =
√

(k1i − τ1j)2 + (k2i − τ2j)2 (5)

Therefore, one would select the two sites that produce the minimum∆ij values for each of
themdistinct design levels, yielding an initial set of 2mcandidate sites.

In a large survey (i.e.,N> 1000), the initial selection of candidate sites can often be sub-
stantially improved by using the above distance criterion (∆) in conjunction with knowledge
of the joint spatial position of the potential sites. For example, supposeqsites with∆ij values
less thanc0 (for some smallc0 tolerance value) are considered potential candidate sites for
thejth design level. Suppose also that the site having the smallest∆ij value is selected as the
first candidate site, and that one additional candidate site is needed for this level. Recall that
the goal of the SRS algorithm (to be described in detail inStep 4) is to maximize some func-
tion of the minimum separation distance between adjacent calibration sites. Thus, to help
improve this maximization process, the second candidate site would be chosen (from the
q− 1 remaining potential sites) such that the physical distance between the two candidate
sites is made as large as possible.

The improvement gained from this type of combined minimum-statistical/maximum-
physical distance selection criteria is shown inFig. 2a versusFig. 2b. Both sets of candidate
sites were generated fromFig. 1data, using the previously described CCRSD with two sites
selected for each of the nine target design levels. The sites shown inFig. 2a were chosen
by selecting the two sites that minimized Eq.(5) at each design level.Fig. 2b shows how
the candidate site coverage pattern changes when the second candidate site for each design
level is chosen such that it is (a) within 0.15 standard deviations of the target design level
and (b) exhibits maximum physical separation from the first candidate site (for that same
design level). Although this technique only maximizes the minimum separation distances
between candidate sites for distinct design levels individually (rather than allmdesign levels
simultaneously), the improvement in the coverage pattern is still pronounced. In general,
this approach tends to significantly improve the minimum separation distances between the
joint set of initial candidate sites, particularly in large surveys.

Step 4. The final selection of an optimal set of sample sites

Once a suitable set of candidate sites have been identified, an iterative optimizing al-
gorithm must be used to identify the “best”m sites, subject to some specific optimization
criteria. Either parametric or non-parametric optimization criteria can be employed, de-
pending on ones prior knowledge of the expected residual spatial correlation structure.

In the parametric approach, a hypothetical spatial covariance structure is assumed and a
function of this covariance structure is directly minimized. For example, suppose that the
residual error distribution is thought to be well approximated by an isotropic spherical model
with range≤�, and define the optimization function to be the average correlation between the
msample sites. Letε (the expected model errors) be distributed asε ∼N(0,�) where� =σ2V
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Fig. 2. Two sets of initial candidate sites from the same field chosen (a) without regard to the physical separation
distances and (b) after maximizing the physical separation distance between sites within specific design levels.

represents the assumed covariance structure. The corresponding optimization criterion (ϕ)
becomes

ϕ = min

(
Var(l′ε)

σ2

)
= min(l′Vl ) (6)

wherel represents a (m× l) vector with each element equal to l/m1/2. In the above example,
if all of the mminimum separation distances exceedα, thenV = I and henceϕ = 1 (which
represents the absolute minimum obtainable value). Thus, asϕ → 1, the assumed sample
site residual covariance structure approaches independence.

If V can be specified precisely, some type of alternative optimality criterion that directly
minimized the expected variance–covariance matrix of the parameter estimates can instead
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be employed, e.g.,

ϕ = max(|X′V−1X|) (7)

In Eq.(7),ϕ represents a generalizedd-optimality criterion (Myers and Montgomery, 2002).
However, such a criterion is only reasonable when the assumed covariance structure (V) is
known with a high degree of precision, since the use of Eq.(7)does not in general guarantee
a final sampling plan whereV≈ I .

In the non-parametric approach, a specific covariance structure is not assumed a priori.
Rather, one only assumes that the correlation between sample sites will decrease as the mini-
mum separation distance between sites increases. Thus, the algorithm attempts to maximize
some suitable function of these separation distances. For example, letd and log(d) represent
(m× 1) vectors of minimum separation distances and log distances for the current sample
configuration, andk represent a (m× 1) vector ofl’s. Three suitable optimization criteria
are

ϕ = max

(
k′d
m

)
= min

(−(k′d)

m

)
(8)

ϕ = max

(
k′ · log(d)

m

)
= min

(−(k′ · log(d))

m

)
(9)

ϕ = max(min(dj)) = min(max(−dj)) (10)

Eq.(8) maximizes the average separation distance between sites, Eq.(9) maximizes the ge-
ometric mean separation distance, and Eq.(10)maximizes the absolute minimum observed
separation distance value in the distance vector. Although all three criteria are reasonable,
Eq. (9) tends to produce a good compromise between the average (Eq.(8)) and min–max
(Eq.(10)) criterion functions for most survey applications.

Once an appropriate optimization criterion has been selected, a suitable search algorithm
can then be employed to select the best set of finalmsites from the larger set ofc candidate
sites (identified inStep 3). The simplest type of algorithm is a sequential search algorithm,
which works as follows:

1. computeϕ0 for a starting set ofmsites;
2. sequentially replace one of the current sites with an appropriately selected “swap-site”

(chosen from thec−m remaining sites), and recomputeϕ after each swap;
3. identify the site associated with the best (minimum)ϕ value computed during thec−m

swaps;
4. if ϕ <ϕ0, exchange the two sites and return toStep 1above, else declare convergence

and exit.

This algorithm has the advantage of being very fast and simple to implement, although
it does not necessarily guarantee convergence to a global optimum (with respect to the
restricted set of initial candidate sites).

More complicated search routines can be employed, such as various types of simulated
annealing algorithms (Krzanowski and Marriot, 1994). Also, it can sometimes be advanta-
geous to perform a constrained optimization where a more traditional optimal experimental
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design objective is used in conjunction with one of the non-parametric distance criteria
described above (Cook and Wong, 1994). For example, suppose that some of the initial can-
didate sites deviate significantly from their corresponding target design levels (this problem
can occur in small samples, where there are only a limited number of survey sites to choose
from). To protect against excessive degradation in the final design, a second criteria such
asd-optimality can be simultaneously computed and tracked. If a particular site exchange
results in a significant reduction ind-optimality, then it can be rejected, etc.

Regardless of the particular details employed in the search routine, the final goal of the
SRS design is to select a set ofn sample locations which are (i) nearly optimal with respect
to matching the selected response surface design levels and (ii) physically separated far
enough apart to ensure that the independent error assumption is adequately met. When a
non-parametric optimization criteria is employed inStep 4, the resulting sampling locations
tend to be spread nearly uniformly across the survey region. Under these conditions, the
selection algorithm operates like a constrained space filling design (Müller, 2001, chapter 4).

3.3. Residual diagnostics for linear models

If a spatially referenced LR model is to be successfully used in place of a SLR model,
then more restrictive modeling assumptions need to be met. A critical assumption in the
LR model is residual independence. In a spatial context, this assumption implies that the
residual errors exhibit a lack of spatial correlation, which is equivalent to independence
under the additional assumption of normality.Brandsma and Ketellapper (1979)introduced
a test statistic for detecting spatially correlated residuals, commonly referred to as the Moran
residual test statistic (Haining, 1990; Tiefelsdorf, 2000; Upton and Fingleton, 1985). This
test can be used to assess the adequacy of the residual independence assumption and is
discussed in more detail inAppendix A.

Additionally, most well known residual analysis techniques used in an ordinary regres-
sion analysis are just as useful when applied to a spatially referenced LR model. These
include techniques for assessing the assumption of residual normality (quantile–quantile
plots), detecting outliers and/or high leverage points (plots of internally or externally stu-
dentized residuals), and detecting model specification bias (residual versus prediction plots,
partial regression leverage plots, added variable plots, etc.). Methods or statistics for assess-
ing the predictive capability of an ordinary regression model (such as the PRESS statistic)
are also directly applicable to the spatially referenced model.Cook and Weisberg (1999)
offer a good review of applied regression model diagnostics and assessment techniques.

4. A field salinity survey example

4.1. Field S2C: data modeling and analysis

The example survey data considered here are from a 1989 salinity survey of a 13.7-ha cot-
ton field located in Kings County, California. The field was furrow irrigated, and the cotton
crop had recently emerged when the survey was performed. The field consisted of sand and
sandy loam soil types (coarse-loamy, mixed calcareous, thermic Aeric Haplaquent). Prior
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yield loss patterns suggested that localized zones of excessive salinity might be present
(personal communication, land owner).

Both EM and four-electrode signal data were collected at 198 sites using a Geonics
EM38 meter and Martek SCT-15 meter attached to a fixed surface-array electrode system,
respectively. Hand-held horizontal (EMH) and vertical (EMV) EM38 signal readings were
acquired at each site, in addition to two surface array conductivity readings (W0–1andW0–2)
corresponding to 0–30 cm and 0–60 cm sampling depths. The survey sites were located
approximated 25 m apart. The exact (relative) coordinate positions were determined using
a Zeiss DME theodolite system. Soil salinity (ECe) samples were also collected at each of
the 198 survey sites from 0 to 30 cm and 30 to 60 cm sample depths and measured on a
saturation extract basis (Rhoades, 1996).

To simplify the statistical analysis, the salinity data have been averaged into composite
0–60 cm samples at each site. The EMV signal data have also been discarded, since the
target soil property is the near-surface salinity level and the EMH, W0–1, andW0–2 signal
data more effectively measure the 0–60 cm depth. All of the statistical calculations were
performed using SAS Version 8 software (SAS Institute, 1999a,b).

Table 1shows some basic summary statistics and quantile estimates for the complete set
of sample salinity and instrument survey data. Equivalent statistics for the natural log trans-
formed data are also given inTable 1, in addition to the ln(ECe)/ln(instrument) correlation
levels. The ECe sample distribution is markedly right-skewed; most of the measurements
(75%) fall below 3.4 dS/m, but the highest salinity levels exceed 16 dS/m. The sensor data
distributions exhibit similar degrees of skewness and appear to be highly correlated with
the EC data on the log scale. The apparent spatial ln(ECe) pattern is shown inFig. 3 and
confirms that localized zones of salinization are present in the field.

Based on the exploratory data analysis, a linear signal+ trend surface regression model
was specified to describe the log salinity/log signal data relationship across the 198 sample
sites. The three log transformed signal readings (i.e., ln(EMH), ln(W0–1), ln(W0–2)) were

Fig. 3. Interpolated map of the observed log salinity pattern in Field S2C, based on 198 sample sites.
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Table 1
Basic summary statistics for the Field S2C soil salinity and sensor data (N= 198)

Variable ECe (dS/m) EMH (mS/m) W0–1 (dS/m) W0–2 (dS/m)

Non-transformed sensor data
Mean 2.86 53.60 2.04 5.53
Standard deviation 3.67 34.52 2.40 5.39
Standard error 0.26 2.45 0.17 0.38

Quantiles (%)
100 (Maximum) 16.66 173.0 11.12 22.03
95 11.53 134.0 7.94 16.89
90 9.43 110.0 6.45 14.88
75 3.34 70.0 2.24 7.30
50 (Median) 1.03 42.0 0.93 2.92
25 0.64 28.0 0.62 1.79
10 0.46 23.0 0.48 1.34
5 0.36 18.5 0.39 1.00
0 (Minimum) 0.31 6.5 0.24 0.39

ln(ECe) (dS/m) ln(EMH) (mS/m) ln(W0–1) (dS/m) ln(W0–2) (dS/m)

Natural log-transformed data
Mean 0.39 3.80 0.21 1.28
Standard deviation 1.10 0.60 0.94 0.92
Standard error 0.08 0.04 0.07 0.07

Calculated correlation matrix
ln(ECe) 1.00 0.87 0.93 0.93
ln(EMH) 1.00 0.86 0.94
ln(W0–1) 1.00 0.94
ln(W0–2) 1.00

first standardized, and then a principal component analysis was performed to extract the
three principal component scores (x1, x2, x3). Additionally, the corresponding (u, v) survey
site coordinates were redefined ascu=u/100 andcv = v/100. The initial regression model
was then specified to be

ln(ECe) = β0 + β1 x1 + β2x2 + β3x3 + β4cu + β5cv + η (11)

where the model error (η) was assumed to be normally distributed with 0 mean and an
unknown covariance structure (�).

Eq.(11)was initially estimated under the assumption of residual independence (� =σ2I ),
so that the regression residuals could be analyzed for evidence of spatial correlation and
non-normality. This analysis confirmed that the normality assumption was reasonable, but
the residual variogram plot revealed clear evidence of short-range isotropic spatial corre-
lation (Fig. 4). Based on these findings, Eq.(11)was re-estimated via restricted maximum
likelihood (SAS: Proc MIXED) using isotropic exponential, spherical, and gaussian co-
variance functions. Six distinct spatial covariance structures were actually used during the
REML estimation process, since each covariance model was fit both with and without a
nugget effect.
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Fig. 4. Sample variogram plot of the OLS-LR model residuals.

Table 2presents the−2 log-likelihood (−2LL) scores and relevant variance parame-
ter estimates obtained from these analyses. As shown inTable 2, all six spatial covariance
structures produced−2LL scores substantially lower than the residual independence model,
confirming that residual errors are indeed spatially correlated. The exponential covariance
function produced the smallest−2LL score among the no-nugget models, while the spheri-
cal function produced the smallest−2LL score among the models including a nugget term.
All of the total sill estimates appear to be similar, as do the practical range estimates for
four of the six spatial covariance structures. The appropriate nugget effect (if any) is more
difficult to deduce from these results. The survey grid used in this study imposed a 25-m
spacing between adjacent sample sites and hence the exact short-range spatial covariance
structure cannot be effectively determined from these data.

Based solely on the−2LL scores, either the no-nugget exponential function or spherical
function with a nugget effect can be judged to be the most appropriate covariance function for
use with Eq.(11). Table 3shows the corresponding regression model parameter estimates

Table 2
REML estimation results for Eq.(11): −2 log-likelihood scores and associated variance parameter estimates

Assumed� structure Variance parameter estimates

−2LLa Nugget Partial sill Range (m) Effective rangeb Total sillc

Spatially independent 179.0 0.126 n/a n/a n/a n/a
Exponental, with nuggetd 155.9 <.001 0.133 18.9 56.7 0.133
Exponential, no nugget 155.9 0 0.133 18.9 56.7 0.133
Spherical, with nugget 155.3 0.054 0.082 68.7 55.8 0.136
Spherical, no nugget 158.6 0 0.126 39.9 32.4 0.126
Gaussian, with nugget 155.7 0.067 0.066 31.7 54.9 0.133
Gaussian, no nugget 157.7 0 0.125 19.1 33.1 0.125

a −2 times the log-likelihood.
b The effective range is defined to be the separation distance at which the value of the estimated spatial covariance

structure is 0.05 times the partial sill.
c Total sill = nugget + partial sill.
d Model converged, but Hessian was found to be not positive definite.
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Table 3
REML regression model parameter estimates, standard errors, andt-test results for Eq.(11)under an assumed (a)
spherical covariance structure (with a nugget effect) and (b) no-nugget exponential covariance structure

Variable Estimate Error t-value Prob (>t)

Under an assumed spherical covariance structure (with a nugget effect)
Intercept 0.039 0.125 0.31 0.727
x1 0.968 0.027 35.21 <.001
x2 0.127 0.028 4.56 <.001
x3 −0.044 0.024 −1.82 0.070
cu 0.112 0.048 2.32 0.021
cv 0.100 0.044 2.25 0.025

Under an assumed no-nugget exponential covariance structure
Intercept 0.029 0.128 0.22 0.826
x1 0.968 0.028 34.87 <.001
x2 0.127 0.028 4.50 <.001
x3 −0.039 0.024 −1.60 0.112
cu 0.114 0.049 2.30 0.023
cv 0.103 0.045 2.27 0.024

Estimates derived using allN= 198 observations.

and standard errors derived using each function. Both sets of estimates (parameters and
standard errors) are nearly identical, regardless of the specific covariance function employed
during the REML estimation process. Additionally, both sets of estimates show that the first
principal component score represents by far the most important regression variable in the
prediction equation. These results are consistent with the principal components analysis
results, which found that the three corresponding eigenvalues explained 94.2%, 4.6%, and
1.2% of the observed variation in the log transformed and scaled signal data, respectively.

More importantly, the above results confirm that OLS estimation techniques should not
be used to estimate Eq.(11), assuming that all 198 sample sites can be used in the analysis.
However, a much smaller set of well chosen calibration sites could be combined with OLS
estimation techniques to estimate Eq.(11) provided that a sufficient minimum separation
distance is maintained between adjacent calibration site locations (about 57 m, based on the
maximum practical range estimate shown inTable 2). Hence, a SRS sampling strategy would
appear to represent a feasible approach for selecting a minimal set of efficient calibration
sample site locations, assuming that cost constraints preclude the acquisition of a large
number of samples.

To facilitate such an analysis, a rotatable second-order CCD having eight cube points, six
axial points, and two center points was used to generate a 16-site sampling plan. The target
design levels for this plan are shown inTable 4, along with some pertinent summary results
generated by the SRS algorithm. Three candidate sites for each design level were initially
identified using Eq.(5) (the euclidian distance function). A geometric mean separation
distance criteria (Eq.(9)) was then employed to optimize the design.Fig. 5a and b shows
the physical sample site locations of the initial and optimized designs, respectively.

The summary results given inTable 4indicate that a fair amount of variation in the
optimized design levels occurred during the optimization process (as compared to the target
levels), but that the geometric mean separation distance was increased from an initial 48.1 m
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Table 4
Summary results from the SRS sampling plan used in Field S2C

Second-order central composite response surface design levels (n= 16)

CCD Final Site # MSDa

Target design levels Optimized design levels

x1 x2 x3 x1 x2 x3

1.00 1.00 1.00 1.26 0.86 0.63 124 68.5
1.00 1.00 −1.00 0.37 1.28 −0.63 192 93.4
1.00 −1.00 1.00 0.64 −0.36 0.48 183 73.8
1.00 −1.00 −1.00 0.64 −0.78 −0.62 168 146.6

−1.00 1.00 1.00 −0.63 1.15 0.86 82 60.8
−1.00 1.00 −1.00 −0.86 0.90 −0.60 15 55.8
−1.00 −1.00 1.00 −1.26 −1.36 0.98 72 70.0
−1.00 −1.00 −1.00 −0.16 −1.92 −1.98 150 68.5

1.73 0.00 0.00 1.63 0.23 0.00 1 96.0
−1.73 0.00 0.00 −1.48 0.31 0.39 20 55.8

0.00 1.73 0.00 −0.59 1.75 −0.15 188 75.4
0.00 −1.73 0.00 −0.11 −1.30 0.19 68 69.6
0.00 0.00 1.73 −0.84 −0.10 1.45 25 68.2
0.00 0.00 −1.73 −0.33 −0.50 −1.34 28 68.2
0.00 0.00 0.00 0.09 0.31 −0.39 114 60.8
0.00 0.00 0.00 −0.21 0.02 −0.24 65 69.6

Geometric mean separation distances (m)
In initial sampling design 48.1
In optimized (final) sampling design 72.8

Between site correlation (under assumed spatial covariance functions)
REML spherical structure (Table 3(a))

Maximum correlation estimate 0.053
Average correlation estimate 0.004

REML exponential structure (Table 3(b))
Maximum correlation estimate 0.052
Average correlation estimate 0.003

a Minimum separation distance between sample site and nearest sample neighbor.

to 72.8 m. The smallest minimum separation distance (MSD) observed in the optimized
design is 55.8 m, and most of the MSD values exceed 68 m. Additionally, the average
expected residual correlation values under the previously discussed spherical + nugget and
no-nugget exponential covariance structures are less than 0.004, and the maximum expected
values are less than 0.053.

The 16 calibration sites identified inTable 4(andFig. 5b) were then used to re-estimate
Eq. (11) using ordinary least squares; the relevant parameter estimates for this model are
shown inTable 5. This model produced anR2 value of 0.867 and a MSE estimate of 0.182.
Thet-tests associated with the parameter estimates show that thex2 (second) andx3 (third)
principal component scores are non-significant, but that at least one of the trend surface
components is marginally significant. A general set of residual diagnostic plots suggested no
problems with the model specification, outside of the relative need for thex2 andx3 principal
component variables. The model residuals satisfied the normality assumption, and a Moran
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Fig. 5. Locations of the (a) initial and (b) optimized 16 calibration sampling locations for Field S2C, as determined
by the spatial RSD algorithm.

test (for residual spatial correlation) produced a non-significant value of 0.73 (p= 0.234),
suggesting that the assumption of approximate residual independence is reasonable.

Table 6comparesTable 5OLS parameter estimates with the corresponding 16 site,
generalized least squares (GLS) estimates derived using each of the previously discussed
spatial covariance structures. The changes are trivial; there is virtually no difference between
the three sets of calculated parameter estimates. Overall, there has been almost no loss in
efficiency from using OLS estimation techniques in place of GLS estimation techniques in
this example, because the residual independence assumption has been adequately met.
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Table 5
OLS regression model parameter estimates, standard errors, andt-test results for Eq.(11)

Variable Estimate Error t-value Prob (>t)

Intercept −0.178 0.336 −0.53 0.607
x1 0.826 0.159 5.21 <.001
x2 0.002 0.113 0.02 0.985
x3 0.111 0.134 0.83 0.428
cu 0.223 0.112 2.00 0.074
cv 0.143 0.117 1.23 0.249

n= 16; Residual errors assumed to be spatially independent.

Table 6
Comparison of OLS and GLS regression model parameter estimates for Eq.(11)

Variable OLS:� =σ2Ia GLS:� = spherical model + nugget GLS:� = exponential model, no nugget

Estimate Estimate Estimate

Intercept −0.178 −0.179 −0.178
x1 0.826 0.827 0.827
x2 0.002 0.002 0.002
x3 0.111 0.111 0.111
cu 0.223 0.224 0.224
cv 0.143 0.143 0.143

n= 16.
a FromTable 5.

The 182 observed versus predicted ln(ECe) observations generated by the LR model are
shown inFig. 6. The calculated correlation between these observed and predicted ln(ECe)
values is 0.918. As shown inTable 7, the average calculated difference (error) between
these data was−0.054, with an observed standard deviation and standard error of 0.44 and
0.033, respectively. The final predicted ln(ECe) field map is shown inFig. 7; this should be
compared to the observed ln(ECe) map shown previously inFig. 3. In most respects, the
predicted pattern agrees quite well with the observed pattern. The high saline zone in the

Fig. 6. Observed versus regression model predicted log salinity for the 182 validation sites, using predictions
generated by the LR model estimated from the 16 calibration sample sites.
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Table 7
Summary statistics for observed and predicted ln(ECe) sample data (ln[dS/m]) forN−n= 182 prediction sites

Observed ln(ECe) Predicted ln(ECe) Observed errors

Mean 0.395 0.449 −0.054
Standard deviation 1.110 0.963 0.444
Standard error 0.082 0.071 0.033

Prediction data generated using the OLS linear regression equation. Observed vs. predicted ln(ECe) correlation
estimate: 0.918.

north-east section of the field has been correctly identified, in addition to the band of elevated
salinity running diagonally across the south-east section. In general, this map is sufficiently
accurate to allow for the effective implementation of a spatially referenced reclamation
effort, and definitely accurate enough for overall salinity classification purposes.

Two points concerning this analysis warrent further discussion. First, in an actual survey
process, the analyst will typically not have a priori knowledge of the correct underlying
model. Instead, the analyst will have to use the limited set of calibration sample data to
determine the appropriate model structure. Hence, employing a sampling design that aids
in this effort clearly makes good modeling sense, and response surface designs tend to be
some of the most efficient designs available for this purpose.

Second, the simple optimization algorithm described in Section3 was successful at
ensuring effective residual independence. Some of this success was gained at the expense
of the final obtained design levels, which tended to exhibit a fair amount of deviation from
their corresponding target levels in this optimized design. This latter effect is primarily due
to the small total survey size (N= 198). In larger surveys this issue is rarely a problem.

4.2. Simulation results

As a final assessment of these survey data, a limited simulation analysis was carried
out to compare some of the optimized SRS sample design features against traditional (i.e.,

Fig. 7. Interpolated map of the LR model predicted log salinity pattern in Field S2C.
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probabilistic) simple random sampling. In this simulation study, 5000 independent simple
random sampling plans of sizen= 16 were selected from the full (N= 198) survey data set.
The following four statistical design criteria were then calculated for each plan:

1. the geometric mean separation distance (geoMSD), as defined in Eq.(9);
2. the average prediction variance (avePVar), defined as

avePVar= 1

182

182∑
j=1

(1 + hjj), hjj = x′
j(X

′
jX)−1xj (12)

wherehjj represents the corresponding hat leverage value for each new prediction, andX
represents the matrix of response variables for Eq.(11)generated by the simple random
sampling plan;

3. the maximum leverage value in the corresponding design matrix (max(hii )), defined as

max(hii) = max[x′
iX(x′X)−1xi, i = 1, . . . , 16] (13)

where theX matrix again represents the matrix of response variables generated by simple
random sampling;

4. the statistical balance across the three principal components (Balance), defined as

Balance=
√

(l′x1)2 + (l′x2)2 + (l′x3)2 (14)

wherexi represents the vector ofith principal component scores selected by the simple
random sampling plan, andl is constant vector with each element equal to (1/16).

These four statistics measure important design criteria associated with the prediction
(regression) model. The geoMSD quantifies the degree of adjacent-site separation distance
achieved by the plan, while the avePVar quantifies the average increase in relative predic-
tion variance across the remaining 182 prediction sites (under the assumption of residual
independence). Likewise, the maximum leverage statistic represents the highest leverage
site in the generated design, and the balance statistic measures the degree of balance in the
design across the three principal component scores. In a robust sampling design, these latter
three statistics should be as small as theoretically possible.

Table 8shows the quantile statistics for these four statistical criteria calculated from 5000
simulated simple random sampling plans (for Field S2C), and compares these to the values
obtained from the previously discussed SRS sampling plan. Recall that the SRS algorithm
explicitly optimized the geoMSD criteria in the SRS sampling plan and achieved a geometric
mean separation distance of 72.8 m. As shown inTable 8, the observed geoMSD statistics
range from 27.6 to 67.1 m in the 5000 simulated plans, with 95% of the plans displaying
values below 54.1 m and 50% of the plans displaying values below 43.8 m. None of the
simple random sampling plans outperform the SRS plan with respect to this design criteria.
Furthermore, the optimized SRS sampling design achieved about 29 m more adjacent-site
separation than 50% of the simple random sampling plans.

The SRS sampling plan also performed quite well with respect to the latter three sta-
tistical criteria. This design exhibits an avePVar statistic that is better than about 89% of
the simulated simple random sampling plans, and a Balance statistic that is better than
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Table 8
Spatial response surface sampling plan vs. simple random sampling: simulation results (N= 5000 simulations)

Design criterion (as defined in text)

geoMSDa (m) avePVarb Max(hii )c Balanced

Spatial response surface 72.8 1.47 0.672 0.134

Quatile estimates generated from 5000 simulated simple random sampling plans (%)
100 (Maximum) 67.1 3.91 0.983 1.031
99 58.5 2.43 0.913 0.825
95 54.1 2.05 0.870 0.677
90 51.6 1.93 0.838 0.597
75 47.8 1.75 0.781 0.488
50 (Median) 43.7 1.62 0.712 0.373
25 39.9 1.53 0.647 0.268
10 36.9 1.47 0.602 0.191
5 35.1 1.43 0.574 0.149
1 31.9 1.39 0.538 0.088
0 (Minimum) 27.6 1.33 0.484 0.028

Number of simulated simple
random sampling plans
producing better design
criterion values

0/5000 (0.0%) 553/5000 (11.1%) 1702/5000 (34.0%) 183/5000 (3.7%)

a Geometric mean separation distance: calculated using Eq.(9) in text.
b Average prediction variance: calculated using Eq.(12) in text.
c Maximum leverage value: calculated using Eq.(13) in text.
d Statistical balance across principal component scores: calculated using Eq.(14) in text.

about 96% of the simulated plans. It performed the least well with respect to the maximum
leverage statistic, but still managed to do better than about 66% of the simulated plans.
Perhaps most importantly, only 5 out of 5000 (0.1%) simple random sampling plans simul-
taneously produced smaller average prediction variance, maximum leverage, and balance
values.

Although limited in scope, these simulation results are nonetheless informative. Specif-
ically, these results show that by combining a response surface sampling plan with spatial
optimization techniques, one can create a sampling design that is not achievable under a
simple probabilistic sampling scheme. Equivalently, if a probabilistic sampling scheme is
to be employed to make model-based inference, then a substantial number of randomization
restrictions will need to be introduced in order to have any chance of generating a robust
design with respect to these model-based criteria.

5. Conclusion

This paper has presented a unified sampling and modeling strategy for predicting soil
property information from spatially referenced sensor data. Particular emphasis has been
focused towards the fitting of spatially referenced regression models using ordinary least
squares estimation and an objective, model-based sampling strategy designed to facilitate
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the estimation of such models. As with most sampling strategies, this approach possesses
distinct advantages and disadvantages. The main advantages of this approach are two-fold.
First, a substantial reduction in the number of samples required for effectively estimating
a prediction equation can be achieved, in comparison to more traditional probability-based
sampling designs. This reduction is achieved by adopting a prediction-based sampling
approach, and employing a suitable response surface design to constrain the sampling al-
gorithm. Through the selection of an appropriate (typically second-order) response surface
design, uncertainty in the correct model specification can generally be minimized. Likewise,
the likelihood of achieving approximate residual independence is greatly enhanced by max-
imizing the minimum separation distance between sample sites. A more complicated spatial
linear model can normally be reduced to just a spatially referenced ordinary regression model
by adopting this type of sampling approach, often with only a trivial loss in efficiency.

Second, this approach lends itself naturally to the analysis of remotely-sensed data.
Ground, airborne, and/or satellite based remotely-sensed data are often collected specifically
because one expects these data to correlate strongly with some parameter of interest (e.g.,
crop stress, soil type, soil salinity, etc.), but the exact parameter estimates (associated with
the prediction equation) may still need to be determined via some type of site-specific
sampling design. This approach explicitly optimizes this site selection process and does so
in a highly cost-effective manner.

Disadvantages to this approach include the reliance on an a priori assumed model re-
sponse structure, and the lack of any effective randomization in the site selection process.
If the postulated model is grossly inadequate and/or the residual error structure exhibits a
pronounced (long-range) spatial structure, then this sampling strategy will generally fail.
These problems tend to occur most frequently when the sensor readings exhibit poor cor-
relation with the target soil property and/or the target soil property is strongly influenced
by secondary features that are not adequately measured by the sensor data. Of course, if
the analyst suspects beforehand that the sensors will correlate poorly with the target soil
property, then there is little point in developing any type of (probability or prediction based)
sampling plan that conditions on the sensor response levels. However, if there is significant
concern about the latter issue, then a more traditional probability based sampling strategy
should generally be used in place of and/or in addition to the SRS sampling approach.

Appendix A. Abbreviations

EC soil electrical conductivity

ECa apparent soil electrical conductivity

ECe electrical conductivity of the saturation extract

EM electromagnetic induction

LR (ordinary) linear regression

SLR spatial linear regression

HSLR hierarchical spatial linear regression
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Appendix A (Continued)

UK universal kriging

KED kriging with external drift

CoK cokriging

RSD response surface design

SRS spatial response surface

CCRSD central composite response surface design

ML maximum likelihood

REML restricted maximum likelihood

−2LL −2 log likelihood

x a vector

X a matrix

� a covariance matrix

� a vector of regression model parameters

Appendix B. The Moran test statistic

Brandsma and Ketellapper (1979)introduced a test statistic for detecting spatially cor-
related residuals, commonly referred to as the Moran residual test statistic (Haining, 1990;
Tiefelsdorf, 2000; Upton and Fingleton, 1985). The Moran residual score (δM) is defined
as

δM = e′We
e′e

(A.1)

wheree represents the vector of observed model residuals andW represents a suitably
specified proximity matrix. While the specification ofW can be application-specific, in most
precision agriculture applications it is generally reasonable to specifyW as a scaled inverse
distance squared matrix. Under such a specification, wheredij represents the computed
distance between theith andjth sample locations, the{wij} elements would be defined as:

wii = 0 and wij =
(

dij
−2∑n

i=1dij
−2

)
(A.2)

Brandsma and Ketellapper (1979)showed that the first two moments ofδM are

E(δM) = tr(MW )

n − k
(A.3)
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Var(δM) = tr(MWMW ′) + tr(MWMW ) + {tr(MW )}2

(n − k)(n − k + 2)
− {E(δM)}2 (A.4)

whereE( ), Var( ), and tr( ) represent expectation, variance, and trace functions;nandk rep-
resent the number of sample sites (sample size) and regression model parameters (including
the intercept); andM is defined to beM = I −X(X′X)−1X′. The actual Moran test statistic
is computed as

SM = δM − E(δM)√
Var(δM)

(A.5)

whereSM is compared to the upper (one-sided) cumulative standard Normal probability
density function.

When the Moran residual test statistic is found to be statistically significant, then the
regression model residuals are said to exhibit significant spatial correlation. In this situation,
the LR parameter estimates can be highly inefficient, the mean square error estimate and
test statistics can be significantly biased, and the model predictions may be unreliable.

Appendix C. Assessing a strict residual independence assumption using the
Moran residual test statistic

The previously described Moran residual test statistic represents a reasonable test for
detecting spatially correlated residuals with respect to a specific sampling pattern. How-
ever, in certain situations the analyst may also wish to test for strict (i.e., absolute) residual
independence. Strict residual independence in this context implies that the underlying error
distribution is comprised entirely of pure white noise (or a pure nugget-effect, in geostatis-
tical terminology), that these errors are spatially uncorrelated at all positive lag distances,
and thus (given the additional assumption of residual normality) the regression model errors
will be spatially independent regardless of the sampling pattern. In practice, if prior exper-
imentation suggests that a particular sensor can accurately isolate and measure a specific
soil property, then such an assumption might be tenable.

A test for strict residual independence can be performed provided duplication sample
data is available. For example, consider the balanced case where two samples are acquired
from each ofn calibration sites (resulting in a total sample size of 2n). Define theW matrix
to be a binary (0/1) matrix werewij = 1 if samplesi and j represent duplication sample
data from the same calibration site, andwij = 0 otherwise. As discussed inLesch et al.
(1995b), the resulting Moran residual score (δM) then becomes a simple function of the
traditional “lack-of-fit” test statistic (Myers and Montgomery, 2002). More specifically,
under the assumption of strict independence and a correctly specified LR model,

g(δM) = (1 + δM)/n

(1 − δM)/(n − k)
Fn−k,n (A.6)

whereF represents theF-distribution with (n− k) andn degrees of freedom, respectively.
Thus, ifg(δM) is found to be statistically significant, the assumption of strict residual inde-
pendence should be rejected.
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